OPTIMUS: Discrete Event Simulator for Vehicle-to-Building Charging Optimization

Abstract

The increasing popularity of electronic vehicles has spurred a demand for EV charging infrastructure. In the United States alone, over 160,000 public and private charging ports have been installed. This has stoked fear of potential grid issues in the future. Meanwhile, companies, specifically building owners are also seeing the opportunity to leverage EV batteries as energy stores to serve as buffers against the electric grid. The main idea is to influence and control charging behavior to provide a certain level of energy resiliency and demand responsiveness to the building from grid events while ensuring that they meet the demands of EV users. However, managing and co-optimizing energy requirements of EVs and cost-saving measures of building owners is a difficult task. First, user behavior and grid uncertainty contribute greatly to the potential effectiveness of different policies. Second, different charger configurations can have drastically different effects on the cost. Therefore, we propose a complete end-to-end discrete event simulator for vehicle-to-building charging optimization. This software is aimed at building owners and EV manufacturers such as Nissan, looking to deploy their charging stations with state-of-the-art optimization algorithms. We provide a complete solution that allows the owners to train, evaluate, introduce uncertainty, and benchmark policies on their datasets. Lastly, we discuss the potential for extending our work with other vehicle-to-grid deployments.

Publication
2024 IEEE International Conference on Smart Computing (SMARTCOMP)