Towards a generic computation model for smart city platforms

Abstract

Smart emergency response systems, smart transportation systems, smart parking spaces are some examples of multi-domain smart city systems that require large-scale, open platforms for integration and execution. These platforms illustrate high degree of heterogeneity. In this paper, we focus on software heterogeneity arising from different types of applications. The source of variability among applications stems from (a) timing requirements, (b) rate and volume of data they interact with, and (c) behavior depending on whether they are stateful or stateless. These variations result in applications with different computation models. However, a smart city system can comprise multi-domain applications with different types and therefore computation models. As such, a key challenge that arises is that of integration; we require some mechanism to facilitate integration and interaction between applications that use different computation models. In this paper, we first identify computation models based on different application types. Second, we present a generic computation model and explain how it can map to previously identified computation models. Finally, we briefly describe how the generic computation model fits in our overall smart city platform architecture.

Publication
2016 1st International Workshop on Science of Smart City Operations and Platforms Engineering (SCOPE) in partnership with Global City Teams Challenge (GCTC) (SCOPE - GCTC)