A Reusable and Extensible Web-Based Co-Simulation Platform for Transactive Energy Systems

Abstract

Rapid evolution of energy generation technology and increased used of distributed energy resources (DER) is continually pushing utilities to adapt and evolve business models to align with these changes. Today, more consumers are also producing energy using green generation technologies and energy pricing is becoming rather competitive and transactional, needing utilities to increase flexibility of grid operations and incorporate transactive energy systems (TES). However, a huge bottleneck is to ensure stable grid operations while gaining efficiency. A comprehensive platform is therefore needed for grid-scale multi-aspects integrated evaluations. For instance, cyber-attacks in a road traffic controllertextquoterights communication network can subtly divert electric vehicles in a particular area, causing surge in the grid loads due to increased EV charging and people activity, which can potentially disrupt, an otherwise robust, grid. To evaluate such a scenario, multiple special-purpose simulators (e.g., SUMO, OMNeT++, GridlabD, etc.) must be run in an integrated manner. To support this, we are developing a cloud-deployed web- and model-based simulation integration platform that enables integrated evaluations of transactive energy systems and is highly extensible and customizable for utility-specific custom simulation tools.

Publication
Proceedings of the 3rd International Transactive Energy Systems, Portland, Oregon, USA