Temporal Causal Diagrams for diagnosing failures in cyber-physical systems


Resilient and reliable operation of cyber physical systems of societal importance such as Smart Electric Grids is one of the top national priorities. Due to their critical nature, these systems are equipped with fast-acting, local protection mechanisms. However, commonly misguided protection actions together with system dynamics can lead to un-intentional cascading effects. This paper describes the ongoing work using Temporal Causal Diagrams (TCD), a refinement of the Timed Failure Propagation Graphs (TFPG), to diagnose problems associated with the power transmission lines protected by a combination of relays and breakers. The TCD models represent the faults and their propagation as TFPG, the nominal and faulty behavior of components (including local, discrete controllers and protection devices) as Timed Discrete Event Systems (TDES), and capture the cumulative and cascading effects of these interactions. The TCD diagnosis engine includes an extended TFPG-like reasoner which in addition to observing the alarms and mode changes (as the TFPG), monitors the event traces (that correspond to the behavioral aspects of the model) to generate hypotheses that consistently explain all the observations. In this paper, we show the results of applying the TCD to a segment of a power transmission system that is protected by distance relays and breakers.

Annual Conference of the Prognostics and Health Management Society