Transactive microgrids have emerged as a transformative solution for the problems faced by distribution system operators due to an increase in the use of distributed energy resources and rapid growth in renewable energy generation. Transactive microgrids are tightly coupled cyber and physical systems, which require resilient and robust financial markets where transactions can be submitted and cleared, while ensuring that erroneous or malicious transactions cannot destabilize the grid. In this paper, we introduce TRANSAX, a novel decentralized platform for transactive microgrids. TRANSAX enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, reducing the load on the distribution system operator. TRANSAX provides privacy to participants by anonymizing their trading activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping power flow below line capacity. We show that TRANSAX can satisfy the seemingly conflicting requirements of efficiency, safety, and privacy, and we demonstrate its performance using simulation results.